

Development and Evaluation of an Affordable HIV Viral Load Assay for use in Resource-Limited Settings

Abraham Alabi Viral Diseases Programme MRC Laboratories, Banjul, Gambia

EDCTP 4th Annual Forum Ouagadougou, Burkina Faso

Presentation Outline:

- Introduction
- Assay Development
- Assay Validation
- Assay Implementation:
 - ✤Projects
 - Capacity Building
- Conclusions
- Future Prospects
- Acknowledgement

Background

Increased resources in recent years mean more people in Resource-Poor Settings now have access to ART

Challenges →High Cost of Rx Monitoring →Inadequacy of trained health Personnel →Lack of Infrastructure

Results

Inadequate Immunological & Virological Monitoring of patients on ART Direct virological monitoring is achieved by measuring HIV viral load; however, there are limitations of commercial viral load assays:

- ↔High cost
- Inadequate infrastructure & expertise
- Subtype variations
- ✤Both HIV-1 & HIV-2 prevalent in West Africa

and there is no commercial VL assay for HIV-2

Therefore, robust & cheap VL assays are needed to monitor viral control in clinical trials/intervention programmes

ASSAY DEVELOPMENT

Received funding from EDCTP in 2004 and Project commenced in February 2005

Developed a colorimetric format of an RT-PCR Assay for quantifying HIV RNA in human plasma

Principle:

The Assay is a quantitative reverse-transcribed PCR of the long terminal repeat (LTR) sequence of HIV in which test samples are quantified by comparison with a standard curve

Basic Procedure of Assay:

- Extraction of RNA from Patient's plasma
- Reverse transcription of RNA to cDNA
- PCR with specific HIV LTR primers
- Detection of DNA product by ELONA

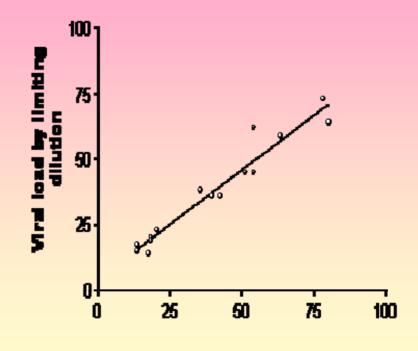
Unique features of the Assay:

- Inclusion of internal calibrator to compensate for RNA loss, inhibition, RT-PCR & makes assay competitive
- Simple Technique
- Use of common Lab Equipment
- Affordable

Assay Validation (1)

Table 1. Differences in RNA copies/ml as determined by our HIV-1 colorimetric assay versus NIBSC expected values

Sample	<u>colorimetric</u>	<u>NIBSC</u>	Log10 Diff.
PWS-1	1055	1270	- 0.08
PWS-2	18467	12700	0.16
97/656	32676	35000	- 0.03
PWS-3	100	175	- 0.24

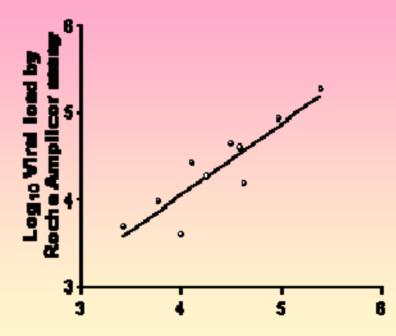

Mean Log Difference = 0.13

Assay Validation (2)

15 HIV-2 positive plasma samples

Quantified by LDA & by Colorimetric assay

Figure 2. Relationship between RNA copies/ml (x10³) as determined by our HIV-2 colorimetric assay and limiting dilution analysis (LDA)



Viral load by color instric assay

Assay Validation (3)

10 HIV-1 positive plasma samples

Quantified by Roche & by Colorimetric assay

Log₁₀ Viral load by colorimatric assay

Figure 3. Relationship between RNA copies/ml as determined by our HIV-1 colorimetric assay and Roche amplicor assay (vs 1.5)

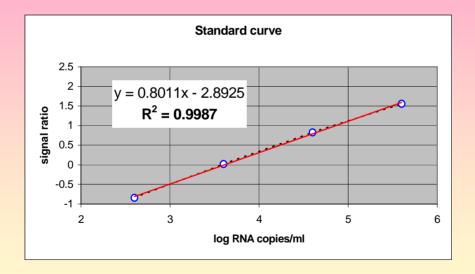
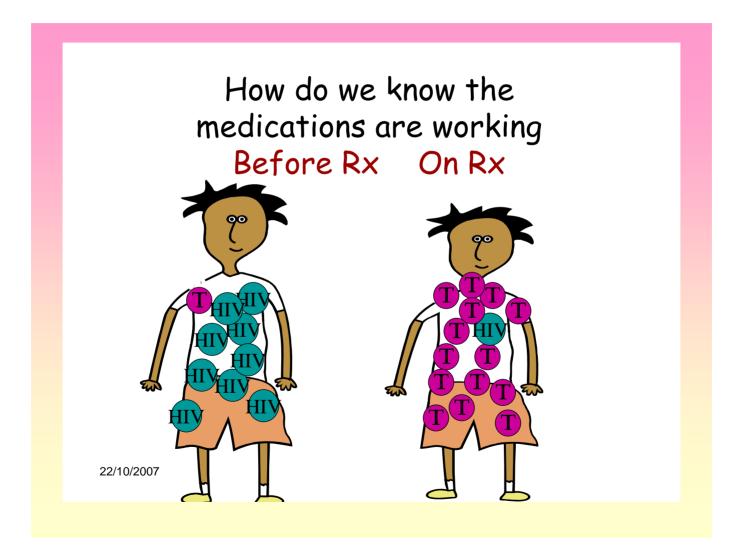

Assay Validation (4)

Table 2. Specificity of HIV-1 Assay

Sample	Sample ID	samples type	copies/ml
1	Neg. ctrl		<100
2	Pos. ctrl		5310
3	N004007	HTLV+ve, HIV-ve	<100
4	N004008	HTLV+ve, HIV-ve	<100
5	N004072	HTLV+ve, HIV-ve	<100
6	N027158	HIV2+ve, HIV-1-ve	<100
7	N027160	HIV2+ve, HIV-1-ve	<100
8	N027180	HIV2+ve, HIV-1-ve	<100
9	N027238	HIV2+ve, HIV-1-ve	<100
10	MVA-190	Hep.B+ve, HIV-ve	<100
11	MVA-197	Hep.B+ve, HIV-ve	<100
12	MVA-373	Hep.B+ve, HIV-ve	<100


Fig. 4 Validity of an Assay Run

	Raw data			
	1	2	3	4
А	5643	38547		
В	5403	38099		
С	19498	19119		
D	21014	19518		
Е	30318	4397	12567	21136
F	29937	4549	13015	20496
G	33587	894.1	24.6	43999
Н	37554	1067	34.7	17928

Sample	Sample ID	Sample date	samples type	copies/ml
1				<100
2				2223

Assay Implementation

APPLICATIONS OF OUR HIV VIRAL LOAD ASSAY (1)

1. HIV Pathogenesis & Transmission:

- •High VL correlates with higher Transmission rates (O'Donovan et al., 2000)
- •High baseline VL correlates with poor prognosis
- (Alabi et al., 2003)
- •VL Dynamics in HIV-1 & HIV-2 Dual Infections
- 2. Treatment Monitoring:
 - Initiation & modification of antiviral treatment
 - •Efficacy of Rx Regimens
 - •Early recognition of resistance development

HAART in Gambia

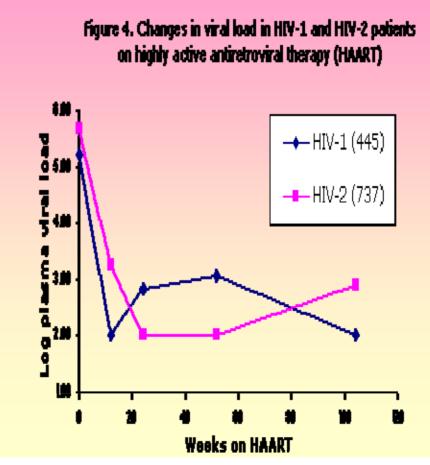
HAART became available in The Gambia in Oct 2004 through the Global Fund for AIDS, TB and Malaria.

> The MRC is one of the main centres in Gambia where these drugs are available.

>Other centres are RVTH and HOC

APPLICATIONS OF OUR HIV VIRAL LOAD ASSAY (3)

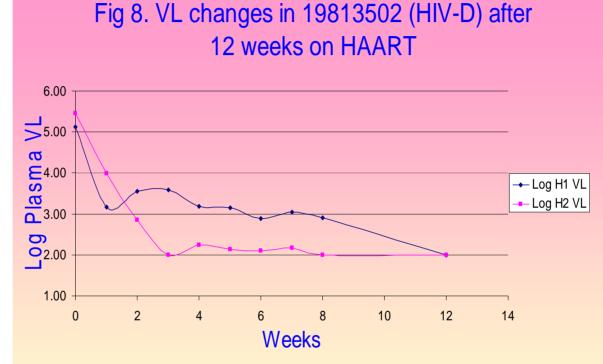
Drug combinations in our GUM


HIV-1: AZT or D4T+3TC+NVP

HIV-2 or HIV-Dual: AZT or D4T+3TC+Kaletra(LPV/Rit)

APPLICATION OF OUR HIV VIRAL LOAD ASSAY (4)

HIV-1 vl undetectable after 12 wks on HAART


HIV-2 vI undetectable after 24 wks on HAART

APPLICATION OF OUR HIV VIRAL LOAD ASSAY (5)

HIV-1 vl undetectable after 12 wks on HAART

HIV-2 vl undetectable after 3 wks on HAART

Capacity Building/Training

 WEST AFRICA SUB-REGIONAL TRAINING ON HIV VIRAL LOAD ASSAY, SEPTEMBER 18-22, 2006, MRC LABORATORIES, BANJUL, GAMBIA

2. SOUTHERN AFRICA REGIONAL TRAINING ON HIV
VIRAL LOAD ASSAY, SEPTEMBER 24-28, 2007,
KENYA MEDICAL RESEARCH INSTITUTE (KEMRI),
NAIROBI, KENYA

PARTICIPANTS AT VIRAL LOAD TRAINING, KEMRI, NAIROBI

Existing & Proposed Networks

North-South:

A Collaboration on <u>HIV-2</u> infection in <u>Europe</u> (ACHIeV₂E) - a multisite project to evaluate various HIV-2 assays in Europe (coordinator: Bernard Antoine, Bordeaux, France)

South-South:

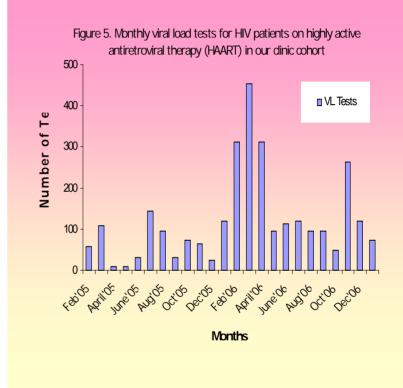
- Collaboration with Gambia's National AIDS Programme
- Scientists/Institutions that participated in sub-regional Training Workshop, September 18-22, 2006
- Scientists/Institutions that participated in Regional Training Workshop, September 24-28, 2007

Conclusions

Cheap high through-put assay developed

Lots of successes

Marketable product


Low cost compared to other assays

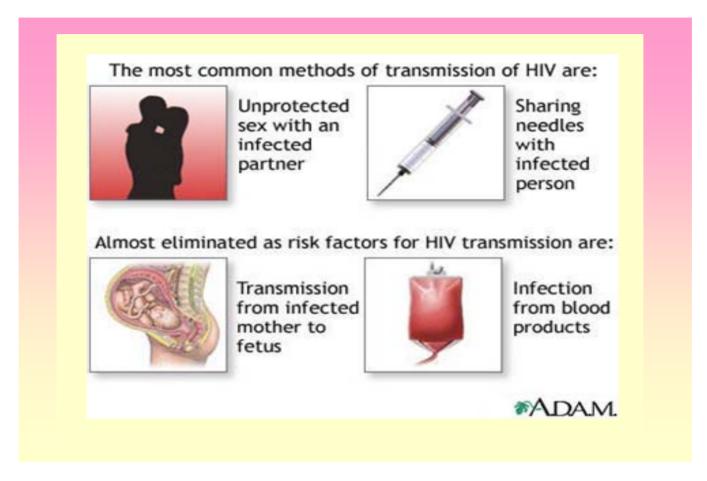
User friendly assay

FUTURE PROSPECTS

- * Conduct a multi-centre evaluation
- * Evaluate assay for HIV subtypes
- * Possibly commercialise assay

APPLICATION OF OUR HIV VIRAL LOAD ASSAY (5)

Acknowledgement


MRC, Banjul **Clayton Onyango** Modou Camara Pa Saidou Chaw Sam MacConkey **Steve Kaye** Hilton Whittle Sarah Rowland-Jones **Tumani** Corrah

NIBSC, London Neil Berry Harry Holmes

EDCTP

HIV TRANSMISSION

Every 14 seconds a person between 15 and 24 years old is infected with HIV virus, accounting for half all new cases of the disease - U.N. Population Fund 2006