

Lumefantrine and Piperaquine: Mechanisms of Resistance

(EDCTP Funded PhD project)

Leah Mwai KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya

INTRODUCTION

Artemisinin Combination Therapy (ACT): Current WHO recommendation

1. Coartem (Artemether-Lumefantrine): first-line treatment in Kenya

2. Artekin (Dihydroartemisinin-piperaquine)- undergoing clinical trials in Kenya

1. Coartem (Artemether-Lumefantrine): first-line treatment in Kenya

Safe and highly efficacious in the treatment of uncomplicated malaria

Falade et al, 2005, Koram et al, 2005, Guthman et al, 2006

<u>Lumefantrine(Benflumetol)</u>

➤ Evidence that resistance to Lumefantrine (LM) could be selected rapidly...

Important to understand the mechanism of resistance to LM

2. Artekin (Dihydroartemisinin-piperaquine) - Used in China, Vietnam

- ✓ Efficacious in treatment of multidrug resistant *P.falciparum* malaria
- ✓ Cheap and easy to administer
- **✓** Potential alternative to Coartem (phase III clinical trials in Kenya)

Piperaquine (PQ)

➤ Used extensively as monotherapy in China, resistance emerged rapidly...

Important to understand the mechanism of resistance to PQ

THE PROJECT

Understanding the mechanisms of Piperaquine (PQ) and Lumefantrine (LM) resistance in *P. falciparum*

Main Goal

Identification of Molecular markers to monitor PQ / LM resistance

The Team

Leah Mwai, KEMRI-Wellcome Trust

Steven Muriithi, KEMRI-Wellcome Trust

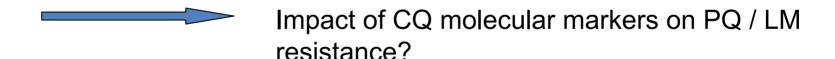
Abdi Diriye, KEMRI-Wellcome Trust

Victor Masseno, KEMRI-Wellcome Trust

Dr. Alexis Nzila, KEMRI-Wellcome Trust

Dr .Philip Sasi, Muhimbili University, Tanzania

Dr .Steffen Bormmann, University of Heidelberg Germany


Dr .Celine Caret, Sanger Institute, UK

HYPOTHESIS

Mismatched pharmacokinetics between artemisinins and PQ / LM

Strong selective pressure for resistance

PQ is Bisnoquinoline/LM is an amino-alcohol

Use of CQ resistance as framework to study LM / PQ resistance

OBJECTIVES OF THE PROJECT

□Assessment of PQ and LM activity in Kilifi over the years of this project
Important to establish the baseline activity of Lumefantrine and Piperaquine as Coartem/Artekin go into widespread use
□Assessment of selective pressure for resistance
➤ Is selective pressure for resistance to Coartem / Artekin exerted by LM/PQ
□Search for molecular markers which can be used to predict Artekin / Coartem efficacy
□Assess the effect of artemisinin derivatives on auditory function in children

OBJECTIVES OF THE PROJECT

□Assessment of PQ and LM activity in Kilifi over the years of this project
Important to establish the baseline activity of Lumefantrine and Piperaquine as they go into widespread use
□ Assessment of selective pressure for resistance
➢ Is selective pressure for resistance to Coartem / Artekin exerted by LM/PQ
☐Search for molecular markers which can be used to predict Artekin / Coartem efficacy
□ Assess the effect of artemisinin derivatives on auditory function in children

CLINICAL TRIAL (IN PROGRESS)

Efficacy of Artekin (PQ/DHA) versus Co-artem (LM/ART) in Pingilikani, Kilifi -2006

223 children

6-59 months age

≥ 5 kg

Artekin (PQ/DHA) - n = 149

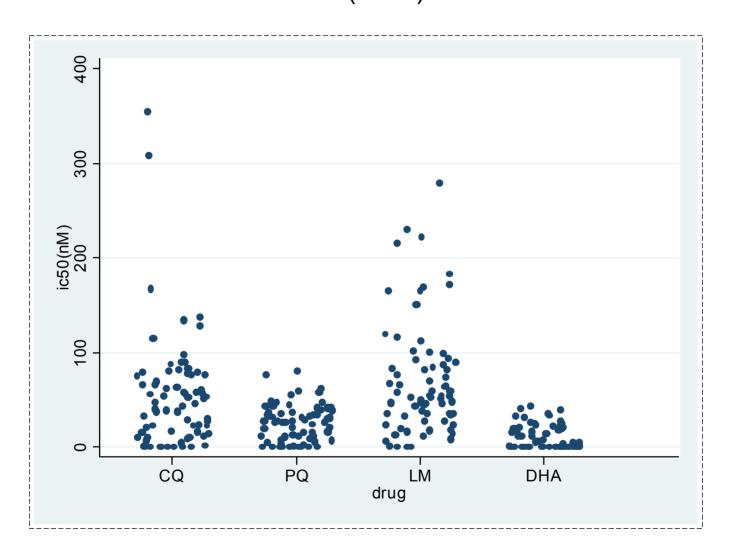
25 parasitological failures (17%) at day 42 of treatment

Coartem (LM/ART) - n = 74

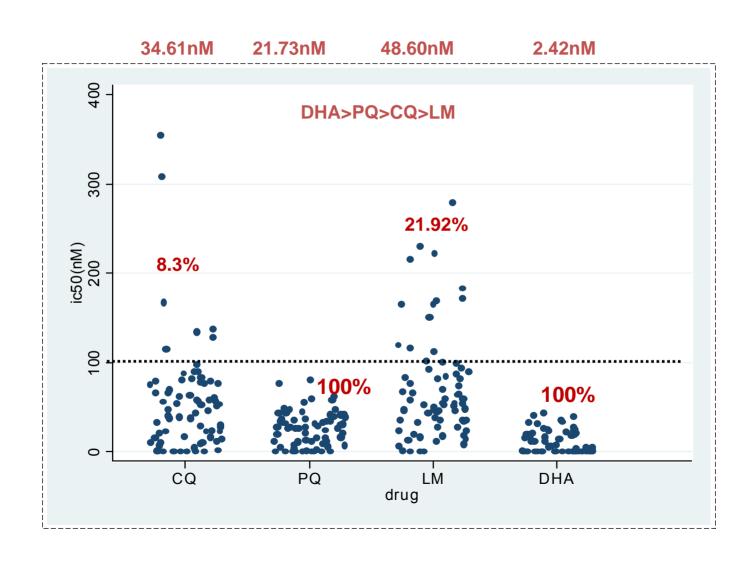
20 parasitological failures (27%) at day 42 of treatment

METHODS

Samples collected before and after treatment



Isolates adapted to in vitro culture



Assessed for activity of CQ, LM, PQ, DHA using hypoxanthine incorporation assay

Distribution of IC50(nM) for CQ, PQ, LM, and DHA (n=73)

Distribution of IC50(nM) for CQ, PQ, LM, and DHA (n= 73)

OBJECTIVES OF THE PROJECT

☐ Assessment of Piperaquine	and	Lumefantrine	activity i	n Kilifi	over
the years of this project					

➤ Important to establish the baseline activity of Lumefantrine and Piperaquine as they go into widespread use

☐ Assessment of selective pressure for resistance

➤ Is selective pressure for resistance to Coartem / Artekin is exerted by LM/PQ

☐ Search for molecular markers which can be used to predict Artekin/Coartem efficacy

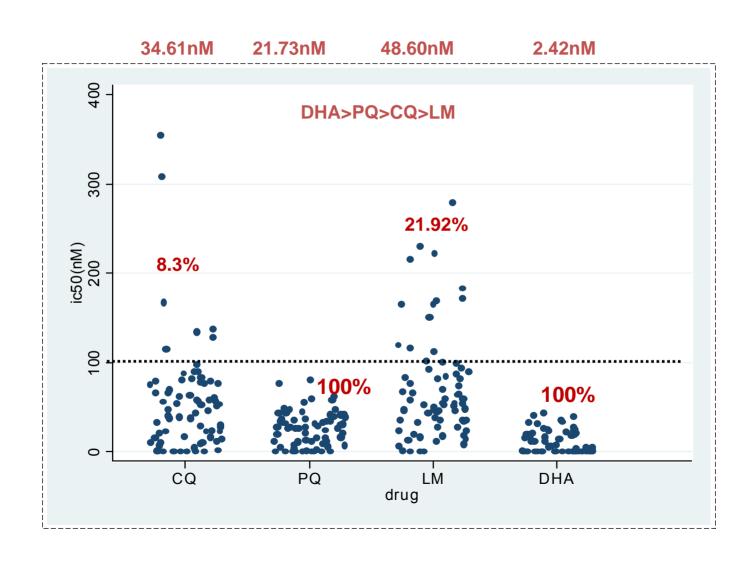
□ Assess the effect of Artemisinin derivatives on auditory function in children

Assessment of LM and PQ Selective pressure

Drug	Mean Ic50(nM)	Mean Ic50(nM)	<i>p valu</i> e (k wallis)
	(Day 0) N=45	*(Recurrent) N=28	
Lumefantrine (LM)	54.33	90.32	p=0.0051
Chloroquine	58.52	38.99	p=0.0074
Piperaquine (PQ)	28.03	25.98	p=0.376

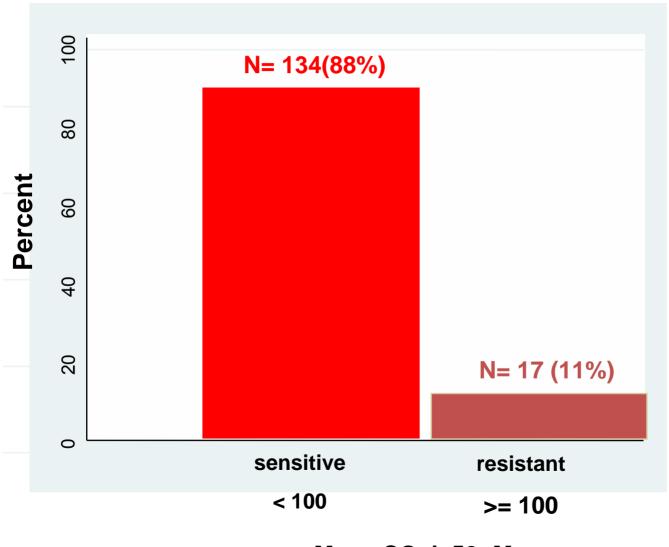
✓ Mean IC50 of LM significantly higher for recurrent parasites-selective pressure for resistance

Similar results reported by Sisowath et al,2005, Dokomajilar et al,2006

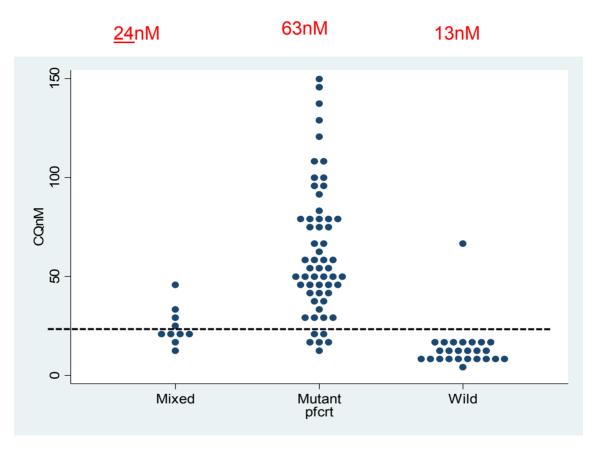

✓ Mean IC50 of CQ significantly lower in these recurrent parasites

Negative correlation between CQ and other amino alcohols reported by Barnes et al, 1992, Cowman et al, 1994

^{*} Data on recurrent parasites has been analyzed irrespective of drug allocation


Chloroquine Activity in Kilifi

Distribution of IC50(nM) for CQ, PQ, LM, and DHA (n= 73)

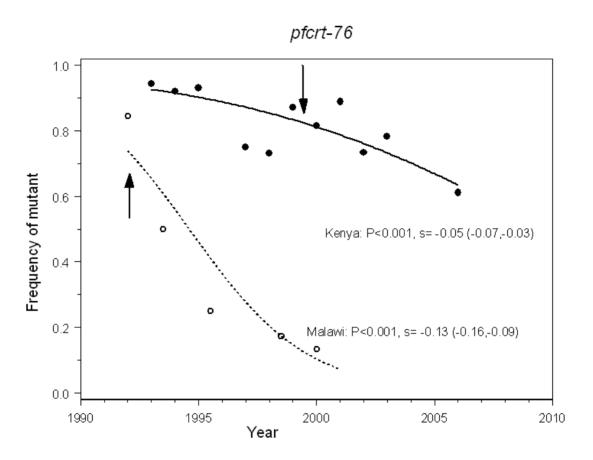

Chloroquine sensitivity in Kilifi isolates using 100nM cut off point

Mean CQ_ic50nM

Relationship between Chloroquine IC50 and pfcrt -76 genotype in Kilifi

Cut off point of 25nM appropriate for Kilifi...

Need for a cut-off point tailored for each site has been proposed, Durand R, 2001


Chloroquine resistance before and after its withdrawal in Kenya

1998: change of policy from CQ to SP as treatment of choice in Kenya

As part of previous and current work

- ✓ Analysed frequency of chloroquine resistant genotypes in Kilifi over years (1993 to 2006)
- ✓ Compared this with data observed in Malawi over the same period

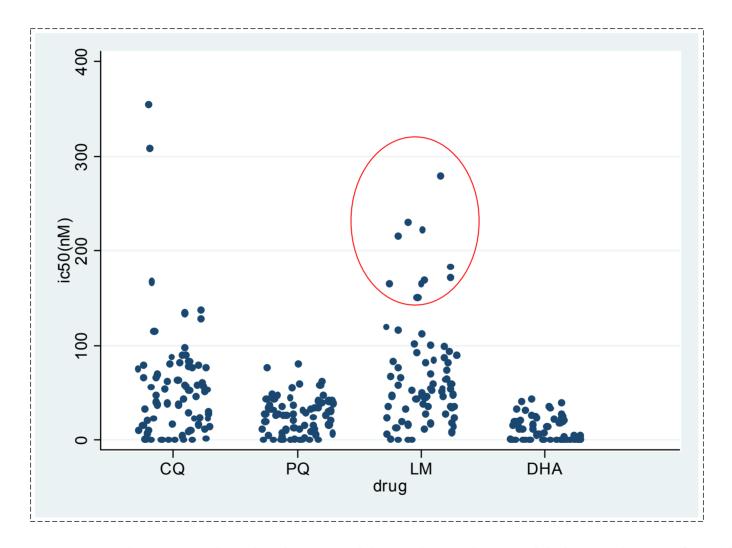
Observed population frequencies of mutant pfcrt-76 over time in Kenya and Malawi

Reversal of chloroquine resistance observed in Kilifi but at a slower pace than that reported in Malawi

Mwai et al, 2007 Chloroquine resistance before and after its withdrawal in Kenya: a study in Kilifi, an area of high transmission-submitted for publication

OBJECTIVES OF THE PROJECT

- □ Assessment of Piperaquine and Lumefantrine activity in Kilifi over the years of this project

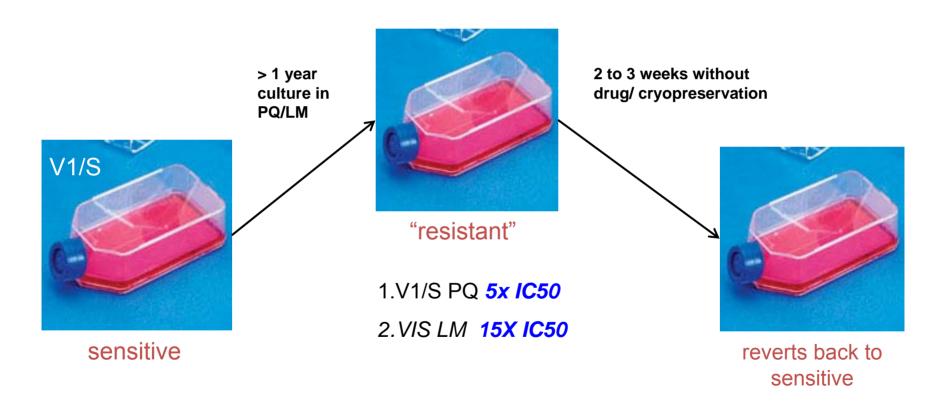

 ➤ Important to establish the baseline activity of Lumefantrine and Piperaquine as they go into widespread use
- □ Assessment of selective pressure for resistance
 - ➤ Is selective pressure for resistance to Coartem / Artekin is exerted by LM/PQ
- ☐ Search for molecular markers which can be used to predict Artekin/Coartem efficacy
- □ Assess the effect of artemisinin derivatives on auditory function in children

Search for molecular markers of LM and PQ resistance

Need to establish isolates that are resistant to LM/PQ

- 1. Assessing the in vitro activity of LM/PQ in Kenyan isolates
 - ➤ identify isolates that have decreased susceptibility to LM / PQ
- 2. Selection of resistance to LM/PQ in vitro by continuous culture in PQ/LM
 - V1/S multidrug resistant reference isolate used
 - 3. Selection of resistance *in vivo* using an animal model-In collaboration with KEMRI Nairobi

Search for LM Markers in Isolates with reduced sensitivity to Lumefantrine


Important to characterize isolates with reduced sensitivity to Lumefantrine...

Work in progress

- 1. Pfmdr1 copy number analysis
- 2. Sequencing of genes associated with quinoline resistance
- ➤ Pfmdr1 (codons 86, 184, 1034, 1042, 1246) and Pfcrt Domain 1, 4 and 5, pfnhe in collaboration with the Hygiene Institute, University of Heidelberg
- 3. Continued adaptation of field isolates *in vitro*, drug assays and assessment of selective pressure

Selection of LM/PQ Resistance In Vitro

Use of V1/S (multidrug resistant reference isolate)

Transient resistance: gene amplification/protein over expression

Work in progress

- 1. Sampling of V1/S LM and V1/S PQ for whole genome analysis / expression profiling using DNA microarrays-In collaboration with Sanger Institute
- 2. Continued selection of resistance in vitro / in vivo
- 3. Characterizing isolates with reduced sensitivity to LM

Summary

- ☐ Chloroquine and Piperaquine active against Kenyan Field isolates
- some isolates have reduced sensitivity to Lumefantrine Need to characterize these isolates.
- ☐ Reversal of Chloroquine resistance in Kilifi but slower pace than in Malawi
- Isolates with transcient resistance to Piperaquine / Lumefantrine obtained
- sampling for microarray analysis ongoing

Acknowledgements

Alexis Nzila
Steven Muriithi
Abdi Diriye
Victor Masseno
Steffen Bormann
Phillip Sasi
Celine Caret
Kevin Marsh

EDCTP
KEMRI/Wellcome Trust