

Effects of genetic variation in CYP2C locus on pharmacokinetics of chlorcycloguanil

Ramatoulie Janha, Fatoumatta Sisay-Joof, Majidah Hamid-Adiamoh, Louis-Marie Yindom, Cyrille Bisseye, Mathurin Diatta, Hyginus Opara, Sam Dunyo, Tumani Corrah, Giorgio Sirugo, Paul Milligan, Kirk Rockett, Munir Pirmohamed, Peter Winstanley, David Conway, Robert Walton

Acknowledgements

Study participants MRC staff EDCTP

Objectives

- To define the prevalence of increased and decreased activity CYP2C alleles relevant to treatment of malaria with antimalarial biguanides in The Gambia, West Africa.
- To assess the effects of both known and newly defined alleles and haplotypes on chlorproguanil and chlorcycloguanil pharmacokinetic parameters such as T_{max}, C_{max} and AUC

Methods (1)

Bioinformatic analysis of the CYP2C gene cluster shows two groups of genetic markers (Figure 1) with a high degree of linkage disequilibrium between markers in each group.

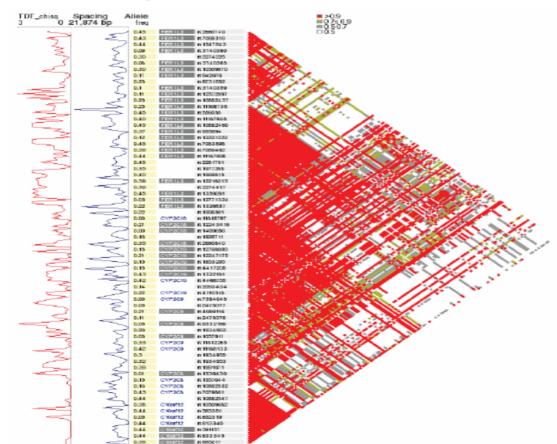
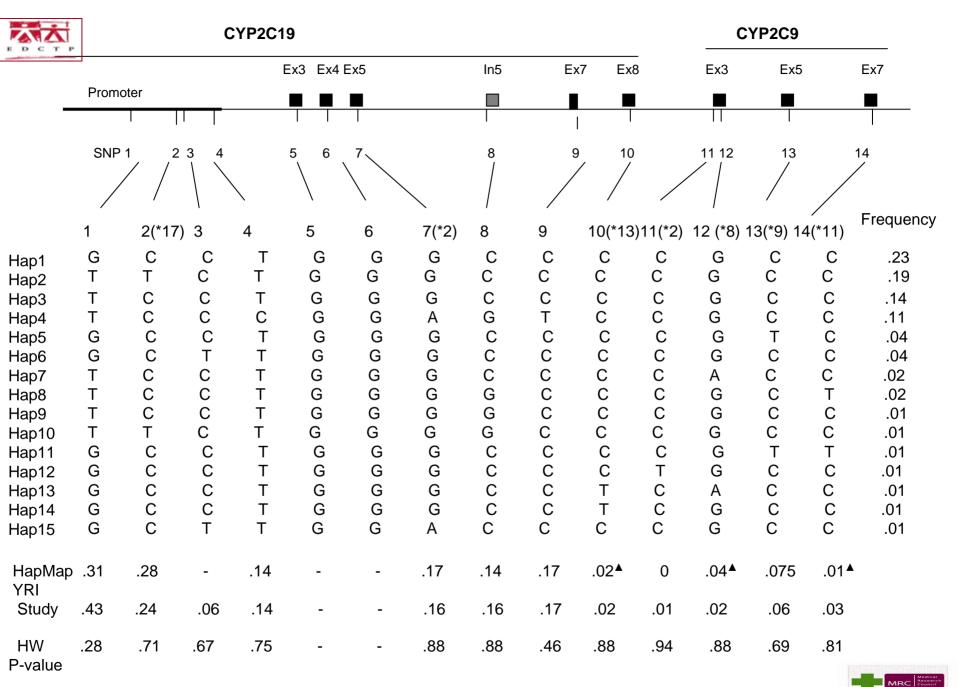


Figure 1 Analysis with marker shows that the CYP2C cluster lies in an area of strong linkage disequilibrium (Walton *et al.*, Nature Genetics 2005)

Methods (2)

We selected 14 loci to genotype by allele specific and real-time PCR

Study subjects were 43 adult participants who underwent detailed pharmacokinetic studies on Lapdap

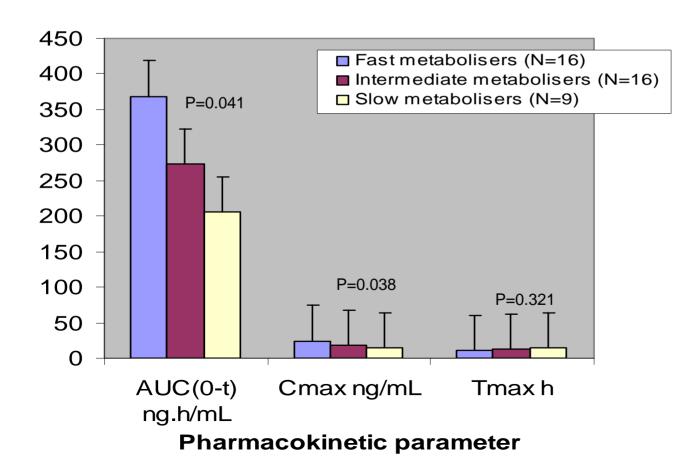

DNA was extracted and allele specific primers designed using Primer3 software

Primers tested in a preliminary ARMS PCR run using control DNA samples from Sukuta in the Gambia

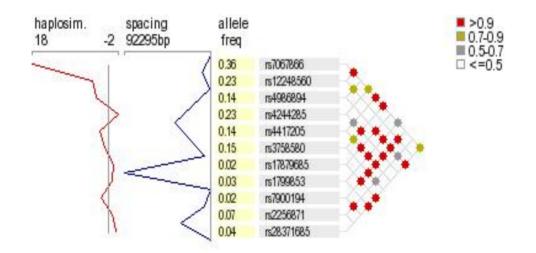
 CYP2C19 SNPs available on the Taqman platform were assessed using ABI 7500 real-time PCR system.

Haplotypes were assembled using a Bayesian algorithm implemented in the Phase 2.2 computer program and analysed for association using MARKER

CYP2C19*17 is a gain of function mutation and the *2 is a loss of function mutation



Allele and haplotype frequencies of CYP2C alleles in Gambians


Effects of genetic variants of CYP2C19 on antimalarial pharmacokinetics

Haplotype block of CYP2C19 and CYP2C9 alleles

generated using the program Marker.

The alleles exhibit very strong LD with high D´-values >0.9.

Discussion & Conclusions

Slow metabolising alleles and fast metabolising alleles have a frequency of 14% and 24% respectively in the adult population in The Gambia

The allele frequencies in the Gambia are similar to frequencies established in West African Yorubas in the HapMap project and in Europeans

✤ The presence of *fast metabolising alleles* cause significant increase in AUC and Cmax of chlorcycloguanil (P<0.05)</p>

♦ CYP2C9 effects cannot be discounted because of strong linkage disequilibrium among CYP2C alleles

Future Perspectives

- Work is in progress to select more markers in the CYP2C cluster. Novel polymorphisms in the population will be identified by sequencing and the new alleles will be biochemically characterised
- We will determine whether the genetic differences that we have shown in pharmacokinetics of chlorcycloguanil translate to clinical effectiveness of antimalarial treatment in a randomised controlled trial of a chlorproguanil/dapsone combination for mild malaria in children (n=417)