Artemether-lumefantrine versus dihydroartemisinin-piperaquine for treatment of uncomplicated falciparum malaria in Uganda:

Nankabirwa Joaniter

Adoke Yeka

Uganda Malaria Surveillance Project Kampala, Uganda

Introduction

- In Uganda, artemether-lumefantrine is the recommended first-line treatment for uncomplicated malaria. Concerns about the following issues:
 - Cost and availability
 - Twice a day dosing
 - High reinfection rates in high endemic areas

Objectives

• Compare the efficacy and safety of artemetherlumefantrine (AL) and dihydroartemisinin-piperaquine (DP) for the treatment of uncomplicated malaria at a high transmission site in Uganda.

Study Methodology

- Randomized, single blinded, clinical trial with 42 days follow up.
- Study site:
 - Aduku HC Apac District
 - Site has perennial holoendemic malaria
 - EIR of 1564
- Genotyping was done to distinguish recrudescence from new infections
- Primary outcomes risk of recurrent parasitemia at days 28 and 42 unadjusted and adjusted by genotyping

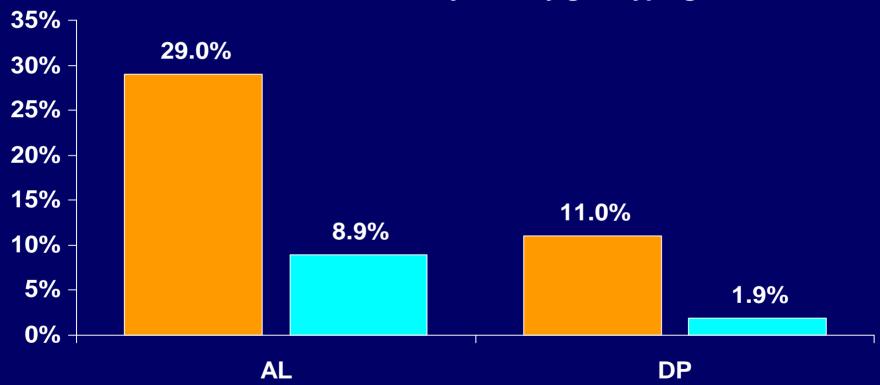
Study Methodology

- Inclusion criteria:
 - Age 6 months 10 years
 - Fever or history of fever in past 24 hours
 - P. falciparum mono-infection
 - Parasite density $2000/\mu l 200,000/\mu l$
 - No severe disease or other febrile illness

Study Methodology

- Treatment.
 - AL: 6 dose regimen (20 mg artemether/120 mg lumefantrine tablets),
 - DP: 3 dose regimen. (40 mg dihydroartemisinin/320 mg piperaquine tablets, total dose of 6.4 and 51.2 mg/kg of dihydroartemisinin and piperaquine, respectively).
 - Treatment was given with a fatty meal and directly observed.
- All patients given ITN at enrollment

Assessment of Treatment Efficacy


- Outcomes classified according to 2003 WHO guidelines
 - Early treatment failure (ETF)
 - Late clinical failure (LCF)
 - Late parasitological failure (LPF)
 - Adequate clinical and parasitological response (ACPR)
- Risk of recurrent parasitemia (unadjusted by genotyping)
 - Proportion of patients with ETF, LCF or LPF
- Risk of recrudescence (adjusted by genotyping)
 - Proportion of patients with ETF or LCF/LPF due to recrudescent parasites using Kaplan-Meier product limit formula (new infections censored)

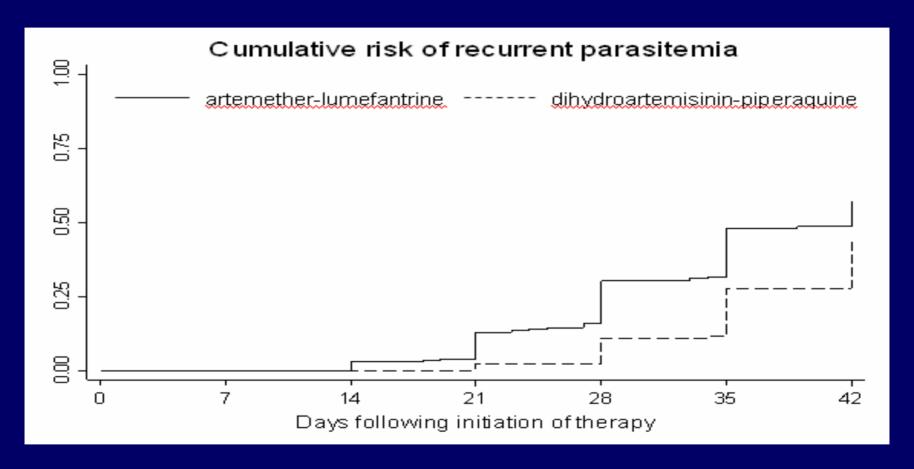
Baseline Characteristics

Characteristic	Treatment group	
	AL (n=210)	DP (n=211)
Completed (%)	208 (99%)	209 (99%)
Age in years, median (IQR)	1.8 (1.0-2-7)	1.5 (0.8-2.5)
Age less than 5 years (%)	195 (93%)	200 (95%)
Temperature °C, mean (SD)	37.7 (1.0)	37.7 (1.1)
Geometric mean parasite density	23394	22789
Hemoglobin gm/dL, mean (SD)	9.7 (1.8)	9.5 (1.9)
Recent antimalarial use (%)	40 (19%)	33 (16%)

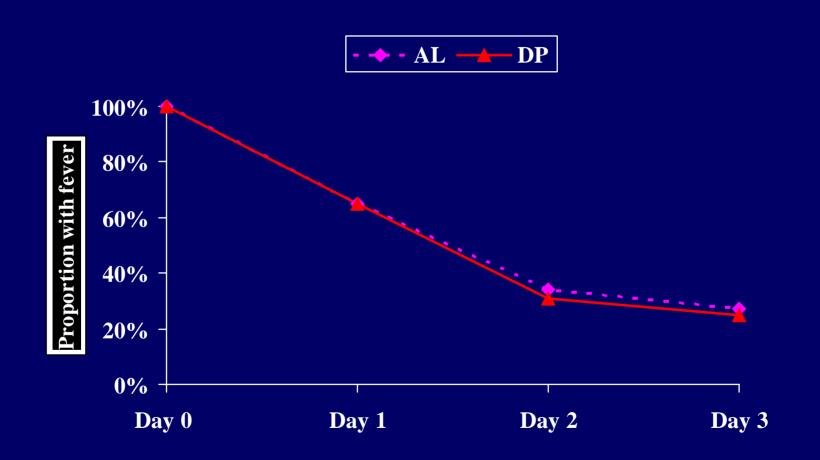
28 day Comparative Results


- Risk of failure unadjusted by genotyping
- Risk of failure adjusted by genotyping

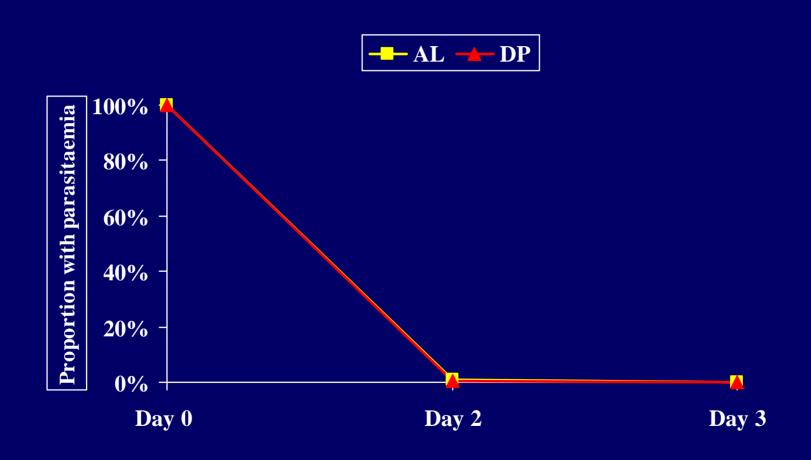
All pair-wise comparisons statistically significant (P<0.05)


42 day Comparative Results

- Risk of failure unadjusted by genotyping
- Risk of failure adjusted by genotyping

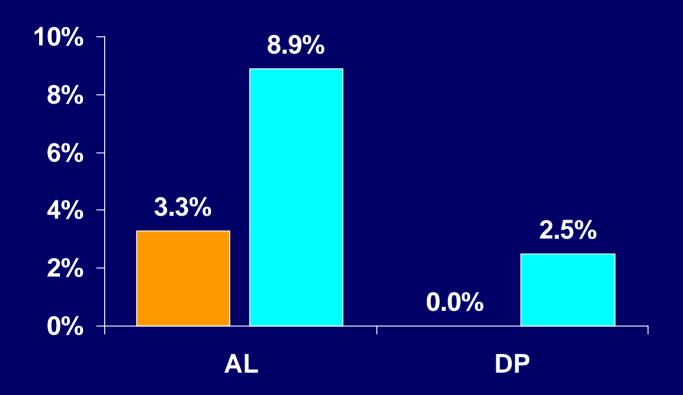

All pair-wise comparisons statistically significant (P<0.05)

Time to recurrent parasitaemia



Median time to recurrent parasitaemia was significantly shorter in AL group compared to DP (28 days vs. 35 days, p<0.0001).

Fever clearance. Proportion of patients with fever during Days 0-3



Parasite clearance. Proportion of patients with parasitaemia during Days 0-3

Gametocyte carriage. Proportion of patients with gametocytes not present on Day 0.

■ % with gametocytes Days 15-28
■ % with gametocytes Days 29-42

All pair-wise comparisons statistically significant (P<0.05)

Hemoglobin recovery

- Mean increase in Hb higher in DP compared to AL group (1.9 vs. 1.5 gm/dL, P=0.05)
- Among patients with recurrent parasitemia there was no difference in the prevalence of anemia (Hb<10 gm/dL) on the day of failure in the AL group (33/117, 28%) compared to the DP group (25/92, 27%)(p=0.87).

Adverse Events: Proportion with adverse events

	AL	DP	P-value
	N=210	N = 211	
Cough.	63%	64%	0.84
Coryza.	58%	60%	0.62
Abdominal pain.	44%	53%	0.51
Weakness.	49%	40%	0.08
Anorexia.	43%	43%	0.92
Vomiting.	31%	31%	1.0
Diarrhoea.	9%	12%	0.42
Pruritus.	10%	7%	0.17
Serious adverse events.	2 (1%)	4 (1.9%)	0.67

Summary

• Both regimens were well tolerated and highly efficacious for treatment of uncomplicated malaria in an area with a very high level of malaria transmission.

• The risk of recurrent parasitemia was significantly lower for participants treated with DP than for those treated with AL.

• DP reduced the risk of gametocytemia and improved hemoglobin recovery compared to AL.

Conclusion

• For both ACT regimens, the high rate of re-infection and the implications of frequent retreatment are a major concern.

• The high reinfection rates in areas of very high malaria transmission highlights the need to re-evaluate the approach to treatment of recurrent episodes of malaria following initial ACT therapy

Policy Implications.

- Results have important policy implications.
 - DP is a highly effective alternative to AL as first line therapy for uncomplicated malaria in Africa.
 - DP is relatively inexpensive, and is easy to use (given once a day for 3 days).
 - DP has a potential role for presumptive treatment of fever in Home Based Management of Fever
 - The slowly eliminated "tail" of piperaquine may provide a selective filter for resistant parasites

Acknowledgments

- Uganda MoH
 - John Bosco Rwakimari
 - Ambrose Talisuna
 - Lugemwa Myers
- IPH, Kampala
 - Fred Wabwire-Mangen
- Makerere University
 - Moses Kamya
 - Sam Nsobya
- CDC/USAID
 - Albert Kilian
- Malaria Consortium
 - James Tibenderana
 - Andrew Collins
 - Nakanwagi Grace

- UC San Francisco
 - Phil Rosenthal
 - Grant Dorsey
 - Sarah Steadke
- MU-UCSF Kampala
 - MU-UCSF team
- UMSP team
 - Hasifa Bukirwa
 - Allen Namagembe
 - Apac site staff

Thank You