

TB Diagnostics: Progress, needs, pipeline

Catharina Boehme EDCTP Stakeholder Meeting: Tuberculosis and mycobacterial infections 28 – 29 October 2013 Paris

Partnering for better diagnosis for all

Advancements in TB diagnostics as per WHO recommendations, 2006-2013

Uptake of new TB diagnostics

Translate opportunities into impact

New WHO endorsed TB tools offer real opportunity to

• Enhance case detection & Rapidly identify drug resistance & Reduce time to treatment & default

Let's learn how to use these and future tools optimally

- New insights into broader problems within the health system
- Use this evidence and do more OR to improve infrastructure & linkage to care
- Innovative partnerships help to maximize impact (across diseases; across sectors)
- Preparing the ground for speedy uptake of optimized tools

Supply, customer support, QA, data management, lab integration

Linkage to public and private treatment providers: acceptance, data access, logistics, insentives

Linkage to patients: alerts, insentives, health insurance schemes

Potential impact of new tools greater than actual impact (– where known...)

for innovative new diagnostics

- Patient drop out rates and remaining tx delays
- Patient access limited (tech limitations, coverage, linkage to care)

CAVEAT: Impact measurement challenging: Not only depending on dx intervention; overtreatment at baseline

Major unmet needs remain

Screening at first point of contact

1. Triaging test

- Incl. for childhood TB & EPTB
- Passive / active screening
- 2. TB infection with high risk of disease progression

Work up & choice of treatment at dedicated unit

 TB confirmation with rapid DST to critical drugs
 Incl. for childhood TB & EPTB

- 2. Treatment monitoring
- 3. Multiplex test to manage TB-neg

Support, surveillance, QA at specialized unit

1. Comprehensive, rapid DST

M-Health supported network

Early development

Late development

On clinical trial Pathway to WHO

High complexity assays

Moderate complexity assays

Low complexity assays

Molecular DST TruArray MDR-TB (Akkoni) INFINITIMTB (AutoGenomics) B-SMART (Sequella)

Culture-based technologies BNP Middlebrook (NanoLogix) Rapid colorimetric DST

Molecular detection and DST Xpert MTB/RIF Enhanced Sensitivity / XDR (Cepheid) Alere Q (Alere) Enigma ML (Enigmadiagnostics) Q-POC (QuantuMDx) DiagCORE (Stat-Diagnostica) EOSCAPE (Wave80) RT-PCR Testing Platform (NWGHF) iCubate 2.0 (iCubate)

Volatile organic compounds

BreathLink (Menssana) Prototype breathanalyzer (Next Dimensions) TB Breathalyser (Rapid Biosensor Systems / Ortho Clinical)

Microscopy

TBDx (Signature Mapping) Fluorescent microscopy with molecular probes (ID-FISH Technology)

Antigen detection LAM in sputum (Standard Diagnostics)

Antibody detection Multiplex antibody array (mBio)

Enzymatic detection and DST β-lactamase reporter (Global BioDiagnostics)

Volatile organic compounds Breath analysis instrument (Metabolomx) Molecular DST LATE-PCR PrimeSafe (Hain) TRC Rapid MTB (Tosoh) LPA PZA (Nipro)

Culture-based technologies TREK Sensitive MYCOTB (Trek)

Molecular detection and DST Genedrive MTB/RIF (Epistem) Truelab/Truenat MTB (Molbio) EncompassMDX (Rheonix)

Volatile organic compounds Giant African Pouch Rats (Apopo)

Microscopy Microimager (BD)

Imaging CAD4TB (Delft Imaging Systems) Molecular DST LPA second-line (Hain) LPA first line followers (Nipro, YD)

Molecular detection TB LAMP (Eiken)

Antigen detection Alere Determine TB-LAM in urine (Alere)

Key approaches to fill TB diagnostics gaps

1. Molecular detection

 State of science
 >10 NAAT platforms in development

 Image: Strategic
 >10 NAAT platforms in development

 > Development of fast follower platforms slower than expected.

 Image: Strategic
 >10 NAAT platforms in development

New generation NAAT platforms

approach

Simplifying & minimizing macrofluidics

Lab-on-a-chip

Isothermal amplification & solving problem of sample volume

Extending utility of molecular tools

Improving detection of Extrapulmonary & Pediatric TB

David Alland, UMDNJ, US

	Treatment
то	monitoring
T1	

Target	Targeted strand	Target primers	Ex
gyrA QRDR	Sense	gyrA-F	dru
gyrB 500-543	Sense	gyrB-F1, gyrB-F2	
katG 315-316	Sense	katG-F	
inhA -8 to -16	Antisense	inhA-R	
embB 306	Sense	embB-F	
Rrs 1400-1484	Antisense	rrs-R	
B. globii (control)	Sense	Bg-R	

cpanding ug menu

Key approaches to fill TB diagnostics gaps

2. Antigen detection

State of
science

 \bigcirc

Sample
Sputum
Serum
Sputum
Sputum
Urine
Urine
Urine

LAM early data - Literature overview

Sensitivity		Sensitivity ss-		Specificity	Specificity	
ss+ TB		TB		Non-TB	healthy	
62%		28%		93%	99%	
(75/119)		(22/80)		(240/258)	(222/224)	
HIV+	HIV -	HIV+	HIV -			
79%	42%	32%	25%			

Chemogen prototype ELISA evaluation in Tanzania, 2006.

 LAM in urine only validated marker

Strategic approach

Apply new tools for AG discovery

Better detection technology

Such as fluorescence labeled LFI

Urinary LAM (Alere Determine) as a screening test for TB in HIV positives with low CD4 cell counts?

Lawn, SD et al 2012

 \bigcirc

Sensitivity of TB LAM in HIV-TB co-infected patients

Dorman, S et al 2012

Peter, JG et al 2012

Against composit RS	Sensitivity (%)	Specificity (%)
All patients	45	96
CD4 > 200	29	100
CD4 ≤ 200	52	94

Shah, M et al 2012

Xpert + TB LAM

LAM in sputum: Prototype accuracy similar to smear microscopy

foundation

for innovative new diagnostics

Automating smear microscopy

β-lactamase detection

nature chemistry

ARTICLES

PUBLISHED ONLINE: 2 SEPTEMBER 2012 | DOI: 10.1038/NCHEM.1435

Rapid point-of-care detection of the tuberculosis pathogen using a BlaC-specific fluorogenic probe

Hexin Xie^{1†}, Joseph Mire^{2†}, Ying Kong^{3†}, MiHee Chang³, Hany A. Hassounah³, Chris N. Thornton⁴, James C. Sacchettini², Jeffrey D. Cirillo³ and Jianghong Rao^{1*}

Key approaches to fill TB diagnostics gaps *3. Volatile Organic Compound detection*

State of science

Olfactory sensing e.g. Apopo Enoses VOC interact with polymer to produce change in electrical resistance. Analytical noses Miniature mass spec/chromatographic devices.

VOC in	Author/Year
Breath	Phillips, 2007
HS of culture	Trevejo, 2007
HS of culture	Syhre, 2008

 Proof-of-principle data with inadequate performance in feasibility studies

Strategic approach

MTB-specific VOC

Use of high end MS devices

Field-applicable detection technology

Miniaturization of sensitive MS

Key approaches to fill TB diagnostics gaps 4. Antibody detection

in point-of-

care format

Strategic approach

gic ach

Chembio Diagnostic Systems 7. CTK Biotech agnostic Systems 9. Laboratorios Silanes Identify diagnostic AB

pattern

Microarray-based screening using high-throughput expression systems

Biomarker efforts critical to fill POC gaps

Reexamining the role of radiography in tuberculosis case finding

Image Science Institute of the Medical Centre of Utrecht University

Reader	1	2	3	4	5	6	CAD
sensitivity	0,31	0,8	0,79	0,64	0,77	0,79	0,87
specificity	0,87	0,27	0,13	0,78	0,63	0,25	0,49

SIEMENS

D

sense and simplicity

>90,000 study participants recruited in TB diagnostic trials in 2012

Clinical pathway to WHO for TB

- WHO endorsement is key to public sector uptake
- Solid evidence base required for WHO expert review

Access to a flexible clinical feasibility platform key for technology selection and development foundation for innovative new diagnostics

Down-select fast and terminate early

Anda

Feasibility

Effective development

1 out of 5 into clinical feasibility

1 out of 5 through feasibility

demonstration

Strengthening the enabling infrastructure...

... to accelerate access to the diagnostics tools we need

Effective development and informed policy decisions:

- Access to specimen
- Trial platform (certified trial sites; reference lab networks)
- Expert guidance / training around WHO-defined needs and standards

Maximize impact of new tools

- Track impact of diagnostic-guided interventions
- Pragmatic operational research & in country capacity building
- Post-market quality assurance (sentinel sites; product and lot testing initiatives)

Global trial site and laboratory network

