Tuberculosis & mycobacterial infections: recent advances and research priorities

EDCTP Stakeholder Meeting

GJ Churchyard Aurum Institute 28th October 2013

Background

Tuberculosis

- Epidemiology
- Drugs
- Diagnostics
- Vaccines
- HDT
- Research priorities
- Buruli ulcer
- Leprosy
- Priorities for research
- Conclusion

Overview

Mycobacterial diseases of poverty

- Tuberculosis, leprosy and buruli ulcer are
 - Infectious diseases of poverty
 - Caused by mycobacteria
 - Treatable and preventable
 - Associated with disability and stigma
 - Require further research to reduce morbidity, stigma, mortality and burden of disease

Epidemiology Drugs Diagnostics Vaccines Research

priorities

Epidemiology

Drugs

Diagnostics

Vaccines

Research

priorities

Estimated TB incidence, 2012

Proportion of new TB cases with MDR TB

MDGs and Stop TB targets

 2015: reduce prevalence of and deaths due to TB by 50% compared to 1990 baseline

 2050: eliminate TB as a public health problem (defined as <1 case per 1 million population per year)

Global trends in TB

Progress towards 2015 targets

GLOBAL	Incidence	Prevalence	Mortality
Global	Met	Not on track	On track
WHO REGION			
African (AFR)	Met	Not on track	Not on track
Americas (AMR)	Met	Met	Met
Eastern Mediterranean (EMR)	Met	Not on track	On track
European (EUR)	Met	Not on track	Not on track
South-East Asia (SEAR)	Met	On track	On track
Western Pacific (WPR)	Met	Met	Met

(Countdown to 2015. Global TB report supplement)

Epidemiology

Drugs

Diagnostics

Vaccines

Research

priorities

Epidemiology

Drugs

Diagnostics

Vaccines

Research

priorities

Pipeline

- Phase II studies
- Phase III studies
- PK studies
- Treatment of LTBI

HDT

Epidemiology

Drugs

Diagnostics

Vaccines

Research

priorities

- Pipeline
- Phase II studies
- Phase III studies
- PK studies
- Treatment of LTBI

HDT

Global TB drug pipeline

Chemical classes: fluoroquinolone, rifamycin, oxazolidinone, nitroimidazole, diarylquinoline, benzothiazinone

¹Details for projects listed can be found at <u>http://www.newtbdrugs.org/pipeline.php</u> and ongoing projects without a lead compound series identified can be viewed at <u>http://www.newtbdrugs.org/pipeline-discovery.php</u>.

^c Drug candidate currently in combination regimen in clinical testing

^R Submitted for approval or approved by stringent regulatory authority (i.e., FDA, EMA, WHO Prequalification)

Www.newtbdruge.org Updated: June 2013 THE AUBUM

INSTITUT

New chemical entity

TB treatment priorities

Patient Population	Vision
Drug-Susceptible TB	Shorter, simpler therapy
Drug-Resistant TB	Fully oral, shorter and safer therapy
TB/HIV co-Infection	few or no DDI with ARVs
LTBI with DS TB	Shorter, safer therapy
LTBI with DR TB	Short, efficacious & Safe

Epidemiology

Drugs

Diagnostics

Vaccines

Research

priorities

Pipeline

- Phase II studies
- Phase III studies
- PK studies
- Treatment of LTBI

HDT

- Greater proportion converted their culture (48% vs 9%)
- Most AEs mild/moderate
- Unexplained deaths up to 2 years after treatment

THE AURUM

Delamanid: 8 week culture conversion rate

Linezolid for XDR TB

Culture conversion: immediate vs delayed start group 79% vs 35% respectively Clinically significant AEs observed in 82%

Lee et al. NEJM. 2012

NC001: 14 day EBA of PA824, bedaquiline, pyrazinamide & moxifloxacin

Phase II trials

Drug	Regimen	Comment
High dose RPT (TBTC29X)	10mg, 15mg, 20mg in S+ TB patients	Safe. At highest dose 100% C- at 8 weeks Phase III trial indicated
High dose rifampicin EBA	10, 20, 25, 30 mg/kg	Well tolerated & trend towards reduced CFUs with higher doses
NC002 (8wk SSCC)	M, PA200,Z-DS TB M, PA100,Z-DS-TB M, PA200,Z-DR TB	Results will be available soon
NC003 (EBA)	Combinations of Clofazamine, bedaquiline, PA824, PZA	<i>Results to be presented at Union Conference</i>
AZD-5847	EBA	Evaluating 4 doses
MAMS-TB-01	HRZQ _{low ,} HRZQ _{high} HR ₂₀ ZQ _{high} , HR ₂₀ ZM	Enrolling

Epidemiology

Drugs

Diagnostics

Vaccines

Research

priorities

Pipeline

- Phase II studies
- Phase III studies
- PK studies
- Treatment of LTBI

HDT

Rifaquine: study regimens

Rifaquine trial: proportion unfavourable

Phase III trials

Trial	Regimen	Comment
Oflotub DS TB	2RHGZ/HR	LB presentation at Union conference
ReMOX DS TB	2RMEZ/4HR 2RHMZ/4HR	Results soon
Delamanid MDR TB	OBR+OPC- 67683/placebo (6m)	MDR TB Enrolling
Bedaquiline MDR TB	Short BR + TMC207 /placebo	Entire Rx duration
STREAM MDR TB	Mox, CLO, Eb, PZA, INH, Prot, Kanamcyin	Compared to standard Enrolling

Epidemiology

Drugs

Diagnostics

Vaccines

Research

priorities

Pipeline

- Phase II studies
- Phase III studies
- PK studies
- Treatment of LTBI

HDT

Nelson Mandela

"Today we are calling on the world to recognize that we can't fight AIDS unless we do much more to fight TB as well"

- Delamanid has lower DDI risk
 - must be taken twice a day
- Sutezolid: not tested with ART
- EFV \oint BDQ conc. by > 20%
- EFV 🕹 PA-824 conc.by ~30%
- Enzyme induction by high-dose rifampin or rifapentine may be similar to standard-dose rifampin

- Delamanid: has lower DDI risk
 - must be taken twice a day
- Sutezolid: not tested with ART
- EFV \oint BDQ conc. by > 20%
- EFV 🕹 PA-824 conc.by ~30%
- Enzyme induction by high-dose rifampin or rifapentine may be similar to standard-dose rifampin

- Delamanid: has lower DDI ris^L
 - must be taken twice a day
- Sutezolid: not tested with AF
- EFV \downarrow BDQ conc. by > 20%
- EFV 🖌 PA-824 conc.by ~30%
- Enzyme induction by high-dc
 rifampin or rifapentine may be similar to standard-dose rifampin

Means with SEs

Time after dose (hours)

- Delamanid: has lower DDI risk
 - must be taken twice a day
- Sutezolid: not tested with ART
- EFV \oint BDQ conc. by > 20%
- EFV **PA-824** conc.by ~30%
- Enzyme induction by high-dose rifampin or rifapentine may be similar to standard-dose rifampin

CROI2013, Poster 188LB

- Delamanid: has lower DDI risk
 - must be taken twice a day
- Sutezolid: not tested with ART
- EFV \oint BDQ conc. by > 20%
- EFV 🚽 PA-824 conc.by ~30%
- Enzyme induction by high-dose rifampin or rifapentine may be similar to standard-dose rifampin

Epidemiology

Drugs

Diagnostics

Vaccines

Research

priorities

Pipeline

- Phase II studies
- Phase III studies
- PK studies
- Treatment of LTBI

HDT

William Osler A Canadian Physician in the 1800

"All who mix with tuberculosis patients got infected, but remained well so long as they took care of themselves and kept the soil in a condition unfavourable for the growth of the seed."
Continuous IPT results in durable reduction in TB risk, while taking it				
Author	Location	IntentionPerto treatProtoco		
<u>Martinson</u>	S. Africa			
TST+		26%	58%*	
<u>Samandari</u>	Botswana			
All		43%		
TST+		74%	100%	
TST-		25%		

(Martinson NEJM. 2011; * Reduction for TB & deaths) (Samandari Lancet. 2011)

Continuous IPT results in durable reduction in TB risk, while taking it			
Author	Location	Intention to treat	Per Protocol
<u>Martinson</u>	S. Africa		
TST+		26%	58%*
<u>Samandari</u>	Botswana		
All		43%	
TST+		74%	100%
TST-		25%	

(Martinson NEJM. 2011; * Reduction for TB & deaths) (Samandari Lancet. 2011)

TB rates increase soon after stopping IPT 6H vs 36H in PWHIV in Botswana

TST positive participants

IPT with ART: a randomised controlled trial

South Africa

IPT with ART: a randomised controlled trial in South Africa

Effect of IPT with ART by TST or IGRA status

	TB rates (100 person years)		Adjusted HR
	Placebo	INH	(95% CI)
TST positive	2.8	2.6	0.86 (0.37-2.0)
TST negative	4.1	1.7	0.43 (0.2-0.86)
IGRA positive	3.9	3.0	0.55 (0.26-1.24)
IGRA negative	3.4	1.7	0.43 (0.2-0.96)

THE AURUM

(Rangaka. Poster 189LB)

IPT promotion in 29 HIV clinics in Rio de Janeiro, Brazil reduced TB incidence/death at a <u>clinic-level</u>

		% reduction	HR (95% CI)	p-value
Primary	ТВ	475	0.87 (0.69-1.10)	0.24
Analysis	TB/Death	1313	0.74 (0.64-0.85)	< 0.001

THE AUBUM

Among <u>employees</u> in the primary outcome measurement

	ТВ	Person years	Rate/100 pyo
Intervention	887	29,352	3.02
Control	856	29,015	2.95

Incidence rate ratio

Unadjusted

Adjusted*

1.00 (95% CI 0.75-1.34) 0.96 (95% CI 0.76-1.21)

*Adjusted for individual level variables gender, age, surface/underground work, and cluster level variables of silicosis and ART prevalences TB case notification rate 12-months prior to cluster enrolment and pre-randomisation strata

Short course rifamycin based regimens have similar efficacy as 6-months IPT in PWHIV TST+ South Africans

Weekly high dose 3HP is non-inferior to 9H

Study 26: High risk persons in US, Canada, Brazil & Spain

Weekly high dose 3HP vs. 9H in HIV-infected persons not on ART (N=393)

- In study 26, only 3% of participants were HIV+
- Enrolment of HIV+s extended to assess tolerability
- In MITT analysis, participants receiving 3HP
 - Had higher completion rates (89% vs 65%, p=0,04)
 - Fewer AEs (≥1) (22 vs. 40%; p=0.004)
 - Less hepatotoxicity (2% vs. 6%; p=0.03)

(Sterling et al, AIDS2012, MOAB0302)

Rifapentine preventive therapy trials

- Study 33 (iAdhere) 3HP given by DOTS, Selfadministered, self-administered with SMS reminder
- A5279.
 - A phase III trial of daily RPT and INH for one month among PWHIV and LTBI in HBCs
 - No PK issues noted with concomitant RPT & EFV
- Sanofi (NCT01690403)
 - PK study of rifapentine on Atripla in HIV+s

Tuberculosis

Epidemiology

Drugs

Diagnostics

Vaccines

Research

priorities

Pipeline

- Phase II studies
- Phase III studies
- PK studies
- Treatment of LTBIHDT

HDT: mechanisms of actions

- Enhance protective immunity
- Facilitate access or activity of chemotherapeutic agents to the bacilli, by disrupting bacteriostatic pathways or fibrosis
- Enhance autophagy

Role of adjunctive HDT

- Shortening the duration of TB treatment
- Improving treatment success of DS & DR TB
- Reducing clinical complications
- Reducing rate of recurrent TB

(Source: R Wallis)

Month 2 culture status and duration as predictors of relapse

Acceleration of TB culture conversion by anti-TNF therapy

Tuberculosis

Epidemiology

Drugs

Diagnostics

Vaccines

Research

priorities

• Pipeline

- WHO endorsed
- WHO not endorsed
- Early development
- Point of care

Tuberculosis

Epidemiology Drugs Diagnostics Vaccines Research priorities

Pipeline

- WHO endorsed
- WHO not endorsed
- Early development
- Point of care

Global TB diagnostics pipeline

Abbreviations: DST Drug susceptibility test; NAAT Nucleic acid amplification test; LTBI Latent TB Infection; POC Point of care; MODS Microscopic observation drugsusceptibility; NRA Nitrate reductase assay; CRI Colorimetric redox indicator assay; LED Light-emitting diode; LPA Line probe assay

Source: WHO Global TB Report 2011

Access after 5 years (%)

Tuberculosis

Epidemiology

Drugs

Diagnostics

Vaccines

Research

priorities

• Pipeline

- WHO endorsed
- WHO not endorsed
- Early development
- Point of care

Assay Procedure for the MTB/RIF Test

Sputum liquefaction and inactivation with 2:1 sample reagent 5 6 7 **DNA** molecules Seminested Sample Ultrasonic lysis of filter-captured mixed with dry real-time automatically filtered and organisms to PCR reagents amplification release DNA washed and detection MTB/RIF in integrated ample Reagent 4ml reaction tube 8 2 Printable Transfer of test result MTB/RIF 2 ml material MTB/RIF into test cartridge Version 143 mahle Resul Assay Name MTB-RIF MTB DETECTED LOW; Test Result **RIF Resistance NOT DETECTED** Cartridge inserted into MTB-RIF test platform (end of hands-on work) The NEW ENGLAND

OURNAL of MEDICINE

Time to result, 1 hour 45 minutes

Xpert MTB/RIF for detection of TB and rifampicin resistance

(WHO Expert meeting report for use of Xpert MTB/RIF, 2013)

	Sensitivity	Specificity
Replacing microscopy as initial test for TB	88%	99%
Add on following negative microscopy	68%	99%
Rifampicin resistance	95%	98%
HIV-associated TB	79%	98%
Children	66%	98%
Extrapulmonary TB	81%	98%

Xpert sensitivity for ETB

WHO recommendations for Xpert

- Xpert MTB/RIF should be used rather than conventional microscopy, culture and DST as the initial diagnostic test in adults presumed to have MDR-TB or HIV-associated TB (strong recommendation, high-quality evidence).
- Xpert MTB/RIF may be used rather than conventional microscopy and culture as the initial diagnostic test in all adults presumed to have TB. (Conditional recommendation acknowledging resource implications, high-quality evidence).

Xpert for TB- Evaluating a New Diagnostic

A cluster randomised trial evaluating patient, programme & population level impact of Xpert

XTENC

XTEND: early mortality

- Median follow-up: 3.3 months (IQR 2.1 3.7)
- During follow-up: 17 deaths, 97.2 person-years (py)
- Overall mortality rate: 17.5 per 100py

Kaplan-Meier mortality plot, among clinic attendees suspected of TB (n=380)

Tuberculosis

Epidemiology

Drugs

Diagnostics

Vaccines

Research

priorities

• Pipeline

- WHO endorsed
- WHO not endorsed
- Early development
- Point of care

Genotype MTBDR*plus 2.0* vs MGIT & clinical TB

Crudu. JCM, 2012	Sensitivity	Specificity
MTB		
Overall	87.6%	99.2%
Smear negative	79.8%	99.2%
Rifampicin resistance		
Overall	94.3%	96.0%
Smear negative	90.7%	96.0%
Isoniazid resistance		
Overall	95.8%	88.9%
Smear negative	93.5%	82.3%

Drug	Sensitivity	Specificity
Kontsevaya,I. JCM. 2011		
Fluoroquinolone	86.2%	100%
Kiet,V.S. JCM. 2010		
Fluoroquinolone	75.6%	100%
kanamycin	100%	100%
Ethambutol	64.2%	100%
Hillemann,D. JCM. 2009		
Fluoroquinolone	88.9%	
Amikacin	75.0%	
Ethambutol	38.5%	
		THE AUBUI

Drug	Sensitivity	Specificity
Kontsevaya,I. JCM. 2011		
Fluoroquinolone	86.2%	100%
Kiet,V.S. JCM. 2010		
Fluoroquinolone	75.6%	100%
kanamycin	100%	100%
Ethambutol	64.2%	100%
Hillemann,D. JCM. 2009		
Fluoroquinolone	88.9%	
Amikacin	75.0%	
Ethambutol	38.5%	
		THE ALIBLI

Drug	Sensitivity	Specificity
Kontsevaya,I. JCM. 2011		
Fluoroquinolone	86.2%	100%
Kiet,V.S. JCM. 2010		
Fluoroquinolone	75.6%	100%
kanamycin	100%	100%
Ethambutol	64.2%	100%
Hillemann,D. JCM. 2009		
Fluoroquinolone	88.9%	
Amikacin	75.0%	
Ethambutol	38.5%	
		THE AURU

Drug	Sensitivity	Specificity
Kontsevaya,I. JCM. 2011		
Fluoroquinolone	86.2%	100%
Kiet,V.S. JCM. 2010		
Fluoroquinolone	75.6%	100%
kanamycin	100%	100%
Ethambutol	64.2%	100%
Hillemann,D. JCM. 2009		
Fluoroquinolone	88.9%	
Amikacin	75.0%	
Ethambutol	38.5%	
		THE ALIBUI

Determine LAM lateral flow assay (Alere)

- uses Determine testing platform
- No sample processing; results in 25 minutes
- Analytical sensitivity reported to be 0.25 ng/ml
- Reporting scale: no band (neg), 1+ to 5+ (pos)

Determine TB-LAM

Author/ Year	Ν	Setting	Sensitivity		Specificity
			Overall	CD4<100	
Peter, 2012	335	Inpatients	45%		96%
Lawn, 2012	516	ART clinic	28%	52%	99%
Dorman S, 2012	561	Outpatients Inpatients	45%	80%	90%

Tuberculosis

Epidemiology

Drugs

Diagnostics

Vaccines

Research

priorities

• Pipeline

- WHO endorsed
- WHO not endorsed
- Early development
- Point of care
TB diagnostics: early development

Volatile organic compounds

- BreathLink, Menssana Research, USA
- Prototype breath analyzer device, Next Dimensions Technology, USA

Molecular technologies

- Alere Q, Alere, USA
- B-SMART, LabCorp, USA
- Gendrive MTB/RIF ID, Epistem, UK
- LATE-PCR, Brandeis University, USA
- GeneXpert XDR cartridge, Cepheid, USA
- TruArray MDR-TB, Akkoni, USA
- INFINITIMTB Assay, AutoGenomics, USA

TB diagnostics: early development

Culture-based technologies

BNP Middlebrook, NanoLogix, USA

- MDR-XDR TB Color Test, FIND, Switzerland/Imperial College, UK
- TREK Sensititre MYCOTB MIC plate, Trek Diagnostic Systems/Thermo Fisher Scientific, USA

Other technologies

- TB Rapid Screen, Global BioDiagnostics, USA
- TBDx, Signature Mapping Medical Sciences, USA

Rationalizing the use of Xpert: the role of automated microscopy

TBDx: automated smear microscopy

- automatically loads slides
- conventional fluorescence microscope
- Autofocuses and digitally captures images
- Reads 300 fields of view
- Computerised algorithms classifies slides as +ve/–ve

Epidemiology

Drugs

Diagnostics

Vaccines

Research

priorities

• Pipeline

- WHO endorsed
- WHO not endorsed
- Early development
- Point of care

The long & winding road to TB treatment

Point of care Xpert in PHCs in Africa

- 5 sites
- Randomised to
 - 758 microscopy
 - 744 Xpert
- TB related morbidity similar, due to common use of empiric treatment

(Theron et al. Lancet. 2013)

Population level impact of same-day microscopy & Xpert MTB/RIF

Epidemiology Drugs Diagnostics Vaccines

Research

priorities

Epidemiology
Drugs
Diagnostics
Vaccines
Research
priorities
Vaccines
Blueprint
BCG revaccination

Epidemiology
Drugs
Diagnostics
Vaccines
Research
priorities
Vaccines
Blueprint
BCG revaccination

TB Vaccine strategies

Potential impact of new TB vaccines, diagnostics and drugs in SE Asia

Epidemiology V Drugs S Diagnostics P Vaccines P Research B priorities

- Vaccination strategies
 - Pipeline
 - Phase II
- Phase IIb/III
- Blueprint

Global TB vaccine pipeline

Phase I	Phase II	Phase IIb	Phase III	
AdAg85A McMaster, CanSino	VPM 1002 Max Planck, VPM, TBVI, Serum Institute (P) (B) H1+IC31 SSI, TBVI, EDCTP, Intercell (P) (B) (P) RUTI Archivel Farma, S.L. (B) (P) (T)	MVA85A/ AERAS-485 Oxford, Aeras, EDCTP B PI IT M72+AS01 GSK, Aeras B PI	<i>M. Vaccae</i> Anhui Longcom IT	
	H56/AERAS-456 +IC31 SSI, Aeras, Intercell P B PI			
Prime	H4/AERAS-404 +IC31 SSI, sanofi-pasteur,			
 Boost POst-infection Immunotherapy 	Aeras, Intercell B Crucell Ad35/AERAS-402 Crucell, Aeras	TB V Viral-vectored: I Protein/adjuvan rBCG: VPM 100 Killed WC or Ex	TB Vaccine Types Viral-vectored: MVA85A, AERAS-402, AdAg85A Protein/adjuvant: M72, Hybrid-1, Hyvac 4, H56, I rBCG: VPM 1002 Killed WC or Extract: Mw, RUTI	

Stop BPartnership

Working Group on New TB Vaccines

JM

TE

Epidemiology Drugs Diagnostics Vaccines Research priorities

- Vaccination strategies
 - Pipeline
 - Phase II
- Phase IIb/III
- Blueprint

VPM1002 in HIV-exposed infants

- Live recombinant rBCG
- Phase IIa:
 - HIV-uninfected newborns: safe & immunogenic
 - HIV exposed and unexposed newborns: safety and immunogenicity study planned

Epidemiology Drugs Diagnostics Vaccines Research priorities

- Vaccination strategies
 - Pipeline
- Phase II
- Phase IIb/III
 - Blueprint

MVA85A Efficacy in BCG vaccinate infants

MVA85A Efficacy in BCG vaccinate infants

DarDar study: M vaccae in HIV-infected adults

 Table 1
 Protection against HIV-associated TB in the DarDar Trial

	Cases			
TB endpoints	Vaccine <i>n</i>	Placebo <i>n</i>	Hazard ratio (95%CI)	<i>P</i> value
Disseminated Definite Probable	7 33 48	13 52 40	0.52 (0.21–1.34) 0.61 (0.39–0.96) 1.17 (0.76–1.80)	0.16 0.03 0.46

HIV = human immunodeficiency virus; TB = tuberculosis; CI = confidence interval.

(von Reyn et al. AIDS, 2010)

TB Vaccine efficacy trials

Agent	Strategy	Туре	Sponsors	Status
M. vaccae	Immunotherapeutic	Whole-cell <i>M.</i> <i>vaccae</i>	AnHui Longcom	Phase III pending
MVA85A/ AERAS-485	Prime-boost	Viral vector	Oxford University, Aeras	Phase IIb in HIV+s Enrolling
M72 + AS01	Prime-boost	Adjuvanted subunit	GSK, Aeras	Phase lib Pending

Epidemiology Drugs Diagnostics Vaccines Research priorities

- Vaccination strategies
 - Pipeline
- Phase II
- Phase lib/IIIBlueprint

TB vaccine blueprint

Keys to progress

- Creativity in research & discovery
- Correlates of immunity & biomarkers for TB vaccines
- Clinical trials: harmonization and cooperation
- Rationale selection of TB vaccine candidates
- Critical need for advocacy, community acceptance & funding

(Brennan, Tuberculosis, 2012)

TB vaccine blueprint

Keys to progress

- Creativity in research & discovery
- Correlates of immunity & biomarkers for TB vaccines
- Clinical trials: harmonization and cooperation
- Rationale selection of TB vaccine candidates
- Critical need for advocacy, community acceptance & funding

- Use out the box approaches to identify mechanisms of protection for TB
- Expand antigenic repertoire & try new combinations
 - Translational
 research,
 comparative
 preclinical
 studies, animal
 studies that mimic
 human TB

(Brennan, Tuberculosis, 2012)

TB vaccine blueprint

Keys to progress

- Creativity in research & discovery
- <u>Correlates of immunity &</u> <u>biomarkers for TB vaccines</u>
- Clinical trials: harmonization and cooperation
- Rationale selection of TB vaccine candidates
- Critical need for advocacy, community acceptance & funding

- Explore novel approaches to identifying biomarkers
- Introduce novel assays
- Identify signatures of efficacy

(Brennan, Tuberculosis, 2012)

Epidemiology Drugs Diagnostics Vaccines Research priorities

TB research priorities

An International Roadmap for **Tuberculosis Research**

Towards a world free of tuberculosis

Stop (B) Partnership

Buruli Ulcer

Buruli ulcer: background

- Buruli ulcer is a neglected but treatable tropical disease
- Caused by subcutaneous infection with *Mycobacterium ulcerans*
- Slowly progressing disease
 - often painless
 - begins as a nodule
 - life-long deformity may occur
- Early diagnosis and treatment are key to preventing disabilities
- Children and the elderly appear most susceptible

Buruli ulcer: burden of disease

- Globally, 26,000 cases recorded b/w 2004-2008
- Greatest burden in Africa
 - Primarily in remote, rural areas
 - prevalence in Ghana and Benin range from 50 -3,500 cases per 100,000

Buruli ulcer: reservoir & mode of transmission

- Although classified as an environmental mycobacterium, does not live freely in the environment
- Occupies specific (vertebrate and invertebrates) hosts
- Infection associated with swamps and slow-flowing water
- Transmitted to humans by an unknown mechanism
 - Mosquitoes may be involved in transmission (in Australia)

Buruli ulcer: diagnosis

- Direct smear examination
- Culture
- Polymerase chain reaction
- Histopathology
- There is no rapid point-of-care test

Buruli Ulcer: treatment and prevention

- Rifampicin & streptomycin/amikacin x 8wks
 - Oral regimen: rifampicin & clarithromycin or ciprofloxacin or moxifloxacin for 3 months
- Surgery to remove necrotic tissue, cover skin defects and correct deformities
- There is no vaccine against BU
 - BCG offers short-term protection

Leprosy: background

- Caused by *M leprae*
- Leading infectious cause of disability
- Delayed diagnosis results in increased risk of nerve damage.
- Stigma an important feature in many cultures

Leprosy: epidemiology

- 250 000 cases/year
- Prevalence fallen substantially
- Transmission continues

(Rodrigues, 2011, Lancet ID)

Leprosy: clinical

 Caused by chronic granulomatous inflammation in skin and peripheral nerves

Classification

- WHO (skin lessions: <6, 6+)
- Ridley-Jopling
 - Tuberculoid disease
 - good cell-mediated immune response
 - few lesions with no detectable mycobacteria
 - Lepromatous leprosy
 - anergic to *M leprae*
 - multiple lesions with mycobacteria present
 - Borderline leprosy types

Leprosy: treatment

- Paucibacillary disease
 - rifampicin and dapsone x6m
- Multibacillary disease
 - rifampicin, dapsone, clofazimine x 12m
- Alternative regimen
 - Rifampicin, oxfloxacin and minocycline X1 month
- Infectiousness reduced after starting treatment
- Relapse rate: 2-3 per 100 person years
- Immune-mediated reactions
 - Occur in 30% of patients with multibacillary disease
 - Steroids are the main treatment

Leprosy: prevention

- Chemoprophylaxis reduces risk in household contacts
 - Rifampicin single dose
 - Rifampicin 2 doses, ofloxacin, minocycline
- Vaccination with BCG protects people from developing leprosy
- Search for subunit protein vaccine been facilitated by the sequencing of *M leprae*
- There is no suitable animal model

Priorities for mycobacterial research

- Integrated research priorities
- Multidisciplinary

TDR: Global research priorities for TB, leprosy and buruli ulcer

Improve diagnostics for infection, disease and drug resistance for TB, leprosy and buruli ulcer, especially point of care tests

Develop improved treatment and prevention regimens (based on current and new drugs) for TB, leprosy and buruli ulcer

Identify and validate biomarkers that facilitate development of vaccines, diagnostics and drugs for TB, leprosy and buruli ulcer

Increase understanding of the pathogenesis of TB, leprosy and buruli ulcer to fuel discovery of drugs, vaccines and diagnostics

Increase understanding of the burden of disease, the modes of transmission and the impact of public health interventions for TB, leprosy and buruli ulcer

Develop novel vaccines and optimise current vaccines for TB, leprosy and buruli ulcer

Evaluate and optimise strategies to improve case finding and reduce barriers to treatment access for TB, leprosy and buruli ulcer

Optimise implementation of preventive therapy (for TB and leprosy), TB infection control and patient centred TB management, especially drug resistant TB

Evaluate and optimise new and current strategies to quantify, prevent and minimise disability and stigma resulting from TB, leprosy and buruli ulcer

Evaluate strategies to strengthen health systems to support control of TB, leprosy and buruli ulcer

What are the barriers?

"we ... activists recoiled from the formaldehyde-enshrouded world of TB science so different from the vibrant and ever forward thrusting vitality of HIV science" 🔨

Continuum of TB research

THE AURUM

Conclusion

- TB, leprosy and buruli ulcer remain important public health problems
- Elimination of TB, leprosy and buruli ulcer is possible
- New diagnostics, drugs and vaccines are required to reduce morbidity, mortality and burden of disease

